DOCUNENT RESUNE

ED 100 369 IR 001 468
AUTHOR Claybrook, Billy G.
TITLE FPOL: A Language for Implementing FPile Organizations

for Information Storage and Retrieval Systeas.
Technical Report No. CS73008=-R.

INSTYTOTION virginia Polytechnic Inst. and State Univ,,
' Blacksburg. QJept. of Computer Science.

PUB DATE Now 73

NOTE 15p.

BDRS PRICE HP-$0.75 HC-3$1.50 PLUS POSTAGE

DESCRIPTORS Computer Programs; *Data Bases; Information

. Processing; *Information Retrieval; *Information
! storage; *Information Systems; *Programing

, { Languages -

IDENTIPIERS . *POL; List Processing Language; LPL; PL 1

ABSTRACT o |

_ /| The computer language FOL is intended to facilitate
the implementation of file organizations for information storage and
retrieval systeas. In many information storage and retrieval
applications the designer, initially, does not know how best to
organize a data base for efficient retrieval and ease of updating and
modifying. IY is felt that POL will provide the desigmner with the
tools for quickly implementing different file organizations during
the experimentation stages of data base design. The paper includes a
brief technical description of POL, its intended uses, and th2 basic
concepts involved in its development. (Author/DnGC)

~o Technical Report CS73008-R

™ FOL: A LANGUAGE FOR IMPLEMENTING FILE ORGANIZATIONS
' FGR INFORMATIOMN STORAGE AND RETRIEVAL SYSTEMS
~
N Billy G. Claybrook
L

JS DEPARTMENTOF HEALTH
EDUCATION & WELFARE
NATIONAL INSTITUTE OF

EOUCATION

a vei o DOCAMENT MAL BEEN LA B Y
% frofva Tovon [N S S I S A
‘ T E N SR
B A e
STATELD L WOt NECES AR v WE PRl
SENT OFE AL NET ONAL NI TTOTEDE

f D ATION BC G T LR R PO

November 1973

I)

Department of Computer Scieﬁce, Virginia Polytechnic
ézag;tute and State University, Blacksburg, Virginia

1R ool

ABSTRACT

~ The language FOL is described. FOL facilitates the implementation
of file organizations for IS & R systems. FOL is implemented in a list
processing language LPL. Files in FOL are interepreted as a list of records,

where each record .. equivalent to a node structure. A description of LPL

is also included.

—
x
.
s

———

1. _INTRODUCTION.

This paper describes a language { 0L that facilitates the implementa-
tion of file organizations for Inforration Storage and Retrieval (IS & R)
systems. In many IS & R applications the designer, initially, does not know
how best to organize his data base for erficient retrieval and ease of_ , |
updating and modifving. We feel that FUL will provide the designer wifH
the tools for imple-enting, quickly, different file organizations.during
the experimentation stages of data base desiqn.

FOL allows the user to describe the structure of records in a file as
“nodes in a 1ist. FOL provides an easy and illustrative scheme for describing
the format of records in a file. The technique for record description is
similar to that used in COBOL F11, but FOL has some additional features
that ailow record description to be sore floxible.

FOL is implemented in a list processing language (LPL). LPL allows any
type of node structure to be defined and thus appears to be a convenient
language for implementing FOL. The advent of vi;tual memory machines allows
this approach to the development and implementation of file organizations to
be feasible. The designer can proceed with the important aspects of file
organization design and omit much of the drudgery of file system programming.

The primary purpoégs of this paper are: (1) to present a brief descrip-

; “
tion of FOL, (2) to describe its intended uses, and (3) to describe the
basic concepts involved in its development. Since we are primarily interested
in presenting concepts and ideas, we do not include a compléte description
of the syntax of FOL; however, examples are given and comments on.the syntax

are included where appropriate.

In Section I, we discuss the design of LPL to provide the reader with

e
9

the background for the discussion of FOL. And in Section III, we provide a

description of FOL and give some examples of its use.

Y

IT. DESCRIPTION OF LPL.

;
A

This section describes LPL and presents the basic ideas in its design
and implementation. LPL has been used in several algebraic manipulation
programs, e.g. writing ar interpreter for the first-crder prediéate calculus

language, polynomial manipulations, and binary tgee processing.

Overview of LPL

The initial implementation of LPL is in PL/1 [2] as an extension td PL/1.
Programs written in LPL are scanned during a pre-processor pass and translated
into a PL/1 program compiled by the PL/1 compiler. LPL requires the use of
dynamic storage allocation so the choice of PL/1 was natural for a first imple-
mentation (this implementation was possible in PL/1 only after some tricky and
imaginative uses of PL/1 based structures).

LPL differs from other list processing languages, e.g. SLIP [3] and LISP
[4], because it allows different types of nodes, that can vary ih size and
structure, to be defined by the user. This allows the user to define nodes
that are natural for his applications, thus allowing him to concentrate on
ideas and avoid the c]umsineéé of trying to determine a way to represent a

structure in a less flexible list processing language.

Description of LPL

LPL allows any number of node types to be defined by the user. LPL uses

o 1 template (for each typ: of node) to describe the attributes of each node

6

type. The node structure in LPL is developed to facilitate garbaée collec-
tion, copying of lists, etz. Each node in LPL cgﬁ have the fo]lowing

fields ((1)-/41) are common to every node):

(1) a type field (TYPE) that contains a pointer to the template
describing this type of node,

(2) an activity bit (ACT) that is used to indicate whether a node
is active (appears in a user list) or inactive (does not appear
in a user list and can be freed by the RELEASE command).

(3) a copy bit (COPY) for use in copying lists, especially recur-
sive lists,

(4) two link fields, MLP and MRP, that link all nodes allocated in
a doubly linked "super" list (this list is processed by the
garbage collector to release inactive nodes), and

(5) the other six entries are optional and any of them can be
included in the node by using the DEFINE statement discussed
below (these entries define the type(s) of values and number of
link fields the user desires in a node structure).

Before we discuss the format of LPL statements, we feel that two other
comments are appropriate. First, LPL is designed so that a considerable
amount of error checking is performed for the user. Secondly, the user cannot
access any of the node entries (1) - (4) described above; inst2ad only the LPL
programming system ¢an manipulate them.

o
The following attributes are available in LPL (all ndymai PL/1 data types

\

are also available): N
\
NODETYPE - Attribute of a variable used for repres%nting the type
of a node \
REAL - . Standard definition k
INTEGER - Standard definition)
ALPHA - Attribute of a vaMiable having an alphafumeric character
string as its value
' | \
IDENT - Attribute of a variable having the identification attri-
bute (e.g. the ID field in SLIP)
RFCNT - Reference count attribute X

ERIC v

POINTER - Indicates the link or pointer attribute

LIST - Declares a variable to be a pointer to a list
STACK i Declares a variable to be a pointer to a stack
QUEUE - Declares a variable to be a bointer to a queue.

A detailed discussion of the LIST, STACK and QUEUE attributes follow in a

later subsection.

Definition of a Node Structure

\f\\\“__’;[ﬁg,BEFINE statement in LPL allows the user to describe the nodes, and

hence their structure, that he will use in an application. The format of

the DEFINE statement js illustrated in the following example:
DEFINE NODE (ITYP, RV(I), IV(J), CV(K), ID(L), RC(M), LK(N)),
where the variables in this argument list must éppear in a declaration statement
such as the one below (the declaration statement must precede the DEFINE state-
ment) :
OCL ITYP NODETYPE,
RV REAL,
IV INTEGER,
CV ALPHA(20),

ID IDENT,
RC RFCNT,

LK PNINTER;

The mode of the variables in the declaration statement indicate to the DEFINE
statement the attributes of the fields to be included in a node of type ITYP.
Not all of the seven ﬁarameters must appear in the DEFINE statement. Only
those parameters necessary to describe the structure of a node are included.

Let us look at the DEFINE statement in detail. ITYP has attribute NODETYPE,
thus indicating the type of node being defined {the value of ITYP is an integer

quantity). Each node can have three kinds of values REAL, INTEGER, or ALPHA.

&

/ _
The user selects only those required for a node cf type ITYP. The subscripts

I, J, and K are the number of REAL, INTEGER, and ALPHA va]ués in a node,
respectively. The number of values can be variable or constant. ID(L), RC(M),
and LK(N) are the identifier, reference count, and link entfies, respectively,

"with L, M, and N being the number of each such fiel’ n a node. It is diffi-
cult to visualize a node that requires more than one identifier or referencé
count field, but the option exists.

As an example the following DEFINE statement

DEFINE NODE (ITYP, IV(2), CV(3), LK(2))

describes a node of type ITYP that has two integer values, three alphanumberic
string values with 20_characters each, and two links or pointers.. The entries
in the DEFINE statement can appear in any order.
LPL Statement Forms

The format of each LPL statement (with the exception of the DEFINE statement)
is given and briefly described belnw (each LPL statement is delimited by a semi-

colon). Nodes pointed to by P, where P has attribute POINTER, are desionated

as node P; and [] indicates the contents are optional. -
1. GET P,I; - Allocates a node P of type I.
2. DELETE p,T[,8]: - Deletes node P in 1ist T, P follows node R.
3. INSERT P,T,R; - inserts node P in 1ist T after node R.
4. RELEASE P; - Frees node P, this statement succeeds only when
the activity bit for node P is turned off and
. the reference count for node P is zero,

5. ENTER expression,T; - Enters the value of expression into T (T must
be a STACK or QUEUE).

6. REMOVE X,7; - Remove an entry from T (T must be a STACK or
QUEUE) and place it in X.

7. RV(N),l=expression; - Sets the Nth (N is an integer) real value
of node P equal to the value of expression
, (the attribute of a value in ncde P can be
REAL, INTEGER, ALPHA, IDENT, RFCNT, or
POINTER).

8. X=RV(N),P; - X is the Nth REAL value in node P (a value
can have attribute REAL, INTEGER, ALPHA,
IDENT, RFCNT, or POINTER).

. 9. COPY S,T; - Makes a copy of 1ist S in list T.
10. P=N,T; - ? is the pointer to the Nth node in list T.
11. ERASE T, - Erase 1ist T (the list will be erased only

if every node has its activity bit turned
off and its reference count is zero.

12. CONCATENATE S,7; - Concatenate 1ists S and T in the order given.
13. SPLIT T,P;, - Sp'it list T at node P.
. 14. SPLIT T,N,P; - Split 1ist T at the Nth node, P is the pointer
to the new list.
15. P, (SINGLY . Declares node P to be a singly-linked, doubly-
DOUBLY linked, left-right linked, or multi-linked
L-R (more than two links) node [5].
MULTI ' :
« (SINGLY REAL The modes REAL, INTEGER,
16. CREATE T JSTACK DOUBLY} JINTEGER | ;- ALPHA, POINTER apply only
QUEUE SINGLY ALPHA to STACKS and QUEUES.
DOUBLY POINTER
SINGLY
LIST | DOUBLY
' L-R
WMULTI
17. COLLECT; - Invokes the garbage collector (garbage collection

is also done automatically by LPL).

Some of the LPL statements require a more detailed desCribtion. The GET
statement allocates a node of a specified type. During the allocation of this
node the template for this node type is interrogated to determine the node's
structure. The DELETE and INSERT statements cause the deletion (insertion) of
a node from (into) a list. These statements autématica]\y handle nodes that

o-re SINGLY, DOUBLY or L-R (left-right) linked. For multilinked nodes, the
ERIC '

X)) \

user must specify the specific pointers to modify during insertion or deletion.
The INSERT statement sets the activity bit in a node, and the DELETE instruc-
tfon resets the activity bit.

The CREATE statement (#16) allows the uirﬂ to declare a variable to be
a pointer to a LIST, STACK, or QUEUE. Any POYNTER variable can also point to
a list, stack, or queue. However, the CREATE statement declares explicitly |
what type of structure is pointed to and also indicates the format of the list
structure, e.g. singly-linked, doubly-~linked, etc. All nodes that appear in
these structures must agree with the format given in the CREATE statement.
Pointers to lists that have a nonnomogeneous mikture of nodes should not. be
referenced in a CREATE stétement. .

The CREATE statement also implies that the top of a STACK and the front
and rear of a QUEUE are automatically set as new entries are added to them. The
CREATE statement for a STACK causes a structure, pointed to by T, to be set up.
This structure contains a pointer to the stack; this pointer (initially NULL) is
set as entries are added to it and removed from it. The variable T in the CREATE
statement for a QUEUE points, not directly to the queue, but to a structure
that contains the front and rear pointers to the queue. The variable T in the
CREATE statement for a LIST points to a list head that contains an identifier
(the QUEUE and’ STACK structures also contain an identifier) indicating the
format of the list and also a pointer to the first node in the 1ist.

Associated with STACK structuras is a function TOP(T) that returns as its
value a pointer to the top of STACK T. Also FRONT(T) and REAR(T) are functions

that return as values pointers to the front and rear, respectively, of QUEUE T.

III. DESCRIPTION OF FOL

FOL is an extension of LPL. FOL statements are translated into LPL by a

A
ol il

preprocessor and executed. Again, no attempt is made here to define all of
.the FOL syntax; instead, we introduce the reader to the basic ;oncepts of FOL.
FOL allows the user to describe the structure of records in a file, and hence
the file, in a descriptive manner similar to ihat of COBOL. However, FOL
allows the structure of a record to change more readily than COBOL. Although
COBOL allows a file to have different types of records, the size of these
records cannot be easily changed and administered as FOL allows. A}so, since
FOL represents records in a file as nodes in a list, no input/ght ut proglems
are encountered directly by the user. |

FOL allows the user to describe his own file organization 4:1th a minimum
of effort. Most programming systems support only a few standa#ﬂ/file organiza-
tions, e.g. sequential, indexed-sequential, and diréct. However, some IS & R
apptications require multilist, inverted,or other more esoteric file organiza-
tions to allow efficient retrieval of taigrmation. FOL 1s useful because it
allows the user to define his ownefile structure, vary record sizes, and pro-
gram his own methods for updating and modifying the files. Techniques for up-
dating and modifying the files are relatively simple since a file is interpreted
as a list of records.

The implementation of FOL in LPL makes the approach to file organization
design described in this paper feasible. LPL is the basis for FOL and allows
the user freedbm and convenience in manipulating files.

.

File Description in FOL.

A file is described in FOL in the following manner:

DCL X FILE MULTI,
X CONSISTS OFEquant RECORDS Y,
Y CONSISTS OF[quanty] FTELCS 21,22,73,24
Z1 CONSISTS OF quanl ALPHA

W CONSISTS 0F[quant % BYTES;
12 CONSISTS OF[quant,] LINKS P POINTER
I3 CONSISTS Or[quant] DATAREA D REAL,
D CONSISTS OF[quant] BYTES;
74 CONSISTS OF[quant] DATAREA E ALPHA,

£ CONSISTS OF[quantg] BYTES;
The above description of file X can be interpreted as a tree structure (similar
to structures in PL/1). The entries thct represent the terminal nodes of the
‘tree are terminated by semicolons (the terminal nodes are W's, P's, D's, and

E's). Other entries in the file description are separated by commas. The

words underlined in the declaration are descriptive/words. The user car add

/
his own descr1pt1ve wods by using the function DE_ PT (descriptive word).
DESCRIPT adds user descriptive words to a table dsed d“?Tng the preprocessor

/
scan. S

FILE is a FOL attribute and MULTIKis,a’h;er supplied name for the file
orgénization. This name can be used by the programmer for associating his
update and modification routines with the file organization named MULTI.

The quant; in the description of file X are optional in some entries (they
must appear in the lowest level entries such as W, P, D, and E). However, {f
a quant; appears in the declaration, it must be an integer constant or variable.
A fixed record structure can be indicated by giving quant]-quant8 constant
values (rarely does the user care to specify quant, a griori); in this case
the user can allocate a record by executing ALLOC Y. If he desires five
records, he can specify ALLOC Y(5).

If quantjis a variable quantity,then its value must be set prior to allo-
cating a record or file. If quantjis not specified for FIELDS 21, 22, Z3, and
Z4 above , then the following sequence must be given (the constants are sef
only for this example):

ALLOC Z1(3); ALLOC Z2(3); ALLOC Z3;
ALLOC 24;
ALLOC Y; v

10
| 4
Tﬁis sequence of statements allocates a record with three keys, three link
fields, one real data area, and.one alphanumeric data area.

Thé above discussion for allocating records is very flexible because
it allows the user freedom in describing the record structure. As an
example of the convenience of this method for describing a file organization
consider fhe following task - adding a key to an existing record in a
multilist organizatioﬁ. A record with the proper structure is allocated,
and the information in the old record is copied along with the new key
(and presumahly a corresponding link field) into the new record. The
0ld record is deleted frof the 1ist and the new record is inserted into
the list in 1ts place. ;These operations are easily perfcrmed within the
scope of LPL.

In the description of FOL given above, we have made no attempt to
provide the user with “canned" organizations, but instead we have attempted

to provide him with the facility for describing his own crganizations.

IV. SUMMARY

Since LPL is an extension of PL/1 and FOL is a slight extension of
LPL (the only currént extension being the capability to describe the
organization of a file as a list of records), the user has a powerful
language with which to work. However, FOL is primarily designed for im-
plementing file organizations and for providing the facilities, through
LPL, for updating and modifying files. A possible extension to FOL is a
means for a]]owing-the user to dgscribe the structure of directories in

a manner similar to that used in describing files.

’

Lt -y ‘

N

REFERENCES

1. Fiengold, Carl. Fundamentals of COBOL Programming, W.C. Brown Company,
Dubuque, Iowa, 1973, 691 pp.

2. IBM System/360 PL/1(F) Language Reference Manual, GC28-8201-4.
3. Smith. D.K. "An Introduction to the List-Processing Language SLIP",

Programming Systems and Lanquages, Rosen, Saul (ed.), McGraw-
H11q. New YorE, Y967, pp. 333-217.

4. McCarthy, John, Abrahams, Paul, Edwards, D.J., Hart, T.P., and Levin, M.I.
o LISP 1.5 Programmer's Manual, M.I.T. Press, Cambridge, Mass. 1969,
106 pr.

5. Knuth, D.E. The Art of Computer Programming, Vol. I, Addison-Wesley,
Reading, Mass., 1368, 634 pp.

!»ﬂ
Ut

